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Thermal convection with large viscosity variations 

By K. E. TORRANCE AND D. L. TURCOTTE 
Cornell University, Ithaca, New York 

(Received 2 March 1970) 

The influence of large variations of viscosity on convection in a layer of fluid 
heated from below has been investigated. Solutions for the flow and temperature 
fields were obtained numerically assuming infinite Prandtl number, free-surface 
boundary conditions, and two-dimensional motion of fixed horizontal wave- 
length. The effects of a temperature-dependent and a depth-dependent viscosity 
were each studied; calculations were also carried out using a temperature- and 
depth-dependent viscosity model appropriate to the earth's mantle. 

1. Introduction 
This paper presents a systematic numerical study of finite-amplitude convec- 

tion in a fluid layer heated from below when the viscosity is a strong function of 
temperature and/or depth. Such flows are of interest in geophysics as well as 
in many technical processes. 

Numerous investigators have studied thermal convection in a fluid with 
constant properties using analytic methods (Kuo 1961 ; Veronis 1966) or numerical 
calculations (Fromm 1965). Numerical solutions for thermal convection in a 
cylindrical container using a viscosity which varied linearly with temperature 
were obtained by Liang, Vidal & Acrivos (1969); however, the viscosity variation 
was insufficient to have a significant effect on flow patterns. Foster (1969a) 
has studied finite-amplitude convection in an internally heated fluid with a 
viscosity which increased exponentially with depth. 

Thermal convection in a fluid with a viscosity which is a strong function of 
temperature and depth may be directly applicable to the earth's mantle. A 
comprehensive theory for continental drift has evolved in the past few years 
(McKenzie & Parker 1967; Morgan 1968; Le Pichon 1968; Isacks, Oliver & 
Sykes 1968). This theory pictures the crust of the earth as a series of plates, 
each plate being a segment of a sphere. These surface plates are created a t  
oceanic ridges and are destroyed at  oceanic trenches. Interactions between 
adjacent plates result in seismic activity, volcanism, and mountain building. 
The probable driving mechanism for the movement of the plates is thermal 
convectionin the upper mantle (Oxburgh & Turcotte 1968; Elder 1968; McKenzie 
1969). Ascending convection occurs beneath ridges and descending convection 
at oceanic trenches. Gordon (1965) has proposed that the fluid behaviour of the 
mantle can be explained by diffusion creep. This type of creep results in a New- 
tonian viscosity which is an exponential function of temperature and pressure 
(Herring 1950). 
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2. Formulation of the problem 
Consider the convective flow of a viscous, heat-conducting fluid confined be- 

tween two horizontal boundaries a t  distance h apart when a body force g acts 
downwards and the lower boundary is maintained at a higher temperature than 
the upper boundary, Th > To. The flow is assumed to be laminar and two- 
dimensional. We take the thermal diffusivity K and the coefficient of thermal 
expansion ct to be constant; however, the viscosity may be a function of the 
temperature T and the vertical co-ordinate y .  

Using primes to denote dimensional variables, we introduce the following non- 
dimensional quantities : 

x = x’/h, y = y’/h, u = hU’/K, v = hV’/K, T = (T‘-TL)/(Ti-TA). 

It is also convenient to introduce a reference value of the kinematic viscosity, 
vo, evaluated at the mean temperature and mean height of the cell. Using this 
reference viscosity we introduce the dimensionless viscosity ratio n = v/vo. 

When the governing equations for a vorticity-stream function formulation 
are put in dimensionless form two dimensionless parameters are introduced : 

Ra = gct(TA- Th) h 3 / v o ~ ,  Pr = v ~ I K .  
Por application to mantle convection it is appropriate to consider the limit of 
large Prandtl number; in addition, we seek steady solutions such that a/at = 0. 
Accordingly, the equations in the Boussinesq approximation reduce to 

a(uT)/aX + a(vT)/ay = V ~ T .  (4) 

Viscous dissipation and internal heat generation have been neglected in writing 
the energy equation (4). A numerical solution of (1) to (4) will be obtained using 
$, w and T as dependent variables. The form of the solution depcnds upon the 
prescribed viscosity function n and the parameter Ra. 

A complete specification of the problem requires boundary conditions. We 
will take the horizontal boundaries to be free surfaces; that is, the tangential 
component of the shear stress vanishes. The resulting boundary conditions are 
$ = w = 0, T = 1 at y = 0 and $ = w = 0, T = 0 at  y = 1. Although the fluid 
is of infinite horizontal extent, it is necessary to restrict our numerical solution 
to a €mite region. We assume that the flow is periodic with a wavelength L. We 
further assume that each region of width L consists of two mirror image 
flows of width +L. Thus a solution will be obtained in the region 0 < y < 1 
and 0 < z < L/2h with the following symmetry conditions on the vertical 
boundaries: @ = w = aT/ax = 0 at x = 0, LlZh. Our analysis will be restricted to 
the case L/2h = 1.4; this corresponds approximately to one-half the wavelength 
for the onset of thermal convection, Ll2h = 42,  in a constant property fluid. 
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Foster (19693) has examined the range of aspect ratios over which a single cell 
can exist for constant property thermal convection. 

Several simplifying assumptions have been made; among them two- 
dimensionality and fixed aspect ratio. It appears that mantle convection can be 
approximated by two-dimensional rolls (Oxburgh & Turcotte 1968). However, 
the observed aspect ratio may be considerably larger than 1.4. The actual aspect 
ratio is determined by more general constraints such as lateral boundaries or 
time history. Inasmuch as rigorous guidelines for the structure of the cells are 
not yet available, care should be exercised in interpreting the numerical results 
to be presented later. 

Finite difference representations of (1)  to (4) were developed which led to 
efficient and stable computations. Central space differences were used every- 
where except for the convection terms on the left side of (4). For these terms a 
special three point non-central difference method described by Torrance (1968) 
was employed. As with all differencing techniques, a truncation error appears 
which requires computations with a sequence of refined grids to establish 
quantitative validity. Assuming a given flow configuration of T, w, 4 and n 
throughout the mesh, the calculation proceeds by extrapolating T and w using 
one Gauss-Seidel and one Jacobi iteration, respectively, of difference forms of (4) 
and (3). For viscosity functions n- with a strong dependence on T or depth, only 
a fraction of the Jacobi advancement of w could be used in order to preserve 
numerical stability. The exact fraction depended upon the particular n- function 
being studied, and will be referred to as the fraction-of-Jacobi (F.O.J.) factor. 
The 4 values are then made current with T and w by using optimized successive 
over-relaxation to simultaneously satisfy a difference form of (2) for all points 
in the mesh. The velocities and viscosity n- are then updated using the new fields 
of 4 and T. The numerical program can then proceed with a further iterative 
extrapolation. Numerical stability in the sense of Lax & Richtmyer (1956) 
follows for the various iterations provided the viscosity n- does not change too 
much from iteration to iteration. Such stability implies convergence of the 
numerical results to the solution of the partial differential equations as the mesh 
is refined. Recognizing that large n variations may require a fine mesh in some 
regions and a coarse mesh in others, the numerical method was designed to 
transform co-ordinates from an x, y plane with a non-uniform mesh to a x, plane 
with a, uniform mesh by using analytic transformations (usually cubic poly- 
nominals). 

The numerical computations are summarized in table 1. A variety of spatial 
grids ranging from an 8 x 6 uniform array to a 22 x 16 non-uniform array were 
used. Fraction-of-Jacobi (F.O. J.) factors and the total number of iterations are 
also listed. The last column gives the run number of the field used as an initial 
guess for the iteration procedure. The first two runs were started from quiescent 
(no motion) fields. The first run used T = 0 for the initial fluid temperature and 
the static conduction field was computed. The second run started from the 
static conduction temperature field T = 1 - y with a perturbation introduced 
at one grid point and a convection solution was computed. This constant viscosity 
solution was used as initial data for a number of other runs. 
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An important aspect of the flows is the effect of convection on the heat flux 
between the horizontal boundaries. This flux can be expressed in terms of a 
Nusselt number, Nu, defined as 

7r 

equa- 
Run Ra tion 

1 3600 (6) 
2 3600 (6) 
3 3600 (6) 
4 3600 (6) 
5 3600 (6) 
6 3500 (7) 
7 3500 (7) 
8A 3500 (7) 
8B 3500 (7) 
9A 3500 (9) 
9B 3500 (9) 
10 3500 (9) 
11 3500 (9) 
12 104 (9) 
13 3.5~ 104 (9) 
14 105 (9) 
15 lo6 (9) 
16 lo6 (9) 
17 loE (9) 
18 107 (9) 
19 107 (9) 
20 108 (9) 

C 
0 
0 
3 
6 
10 
3 
6 
10 
10 

NU 

1.000 
3.428 
2-96 
2.25 
2.25 
2.90 
1.81 
1-16 

1.70 
1.70 
1.69 
1.72 
2.18 
2.78 
3.33 
3.36 
4.58 
4.98 
6.02 
6.61 

- 

- 

Grid 

15 x lluf 
8x621 
8X6U 
8x621 
8 x 6 ~  
8 x 6 ~  
8 x 6 ~  
8 x 6u 
8x624 
8 x 6 ~  
8 x 6 ~  

15 x llu 
15 x lln. 
15 x lln 
15 x lln 
15 x lln. 
22 x 16n 
15 x ll r ~  
22 x 16n 
15 x lln. 
22 x 16% 
15 x lln. 

Minimum 
F.O.J. Initial 
factor 

1-4 
1.3 
1.0 
0.4 
0.02 
0-6 
0.6 
0.2 
0.05 
0.001 
0.002 
0-04 
0.04 
0.04 
0.03 
0.02 
0.02 
0.01 
0.01 
0.01 
0.01 
0.005 

Iterations 

400 
80 
100 
160 
690 
80 
110 
800 
2000 
5400 
1400 
600 
500 
500 
700 
700 
400 
800 
2300 
1100 
1500 
3600 

guess 
- 
- 
2 
3 
4 
2 
6 
7 
2 
4 
2 
9A 
10 
11 
12 
13 
14 
14 
16 
16 
18 
18 

t u and n. refor to uniform or non-uniform grid spacing. 

TABLE 1. Summary of numerical calculations 

where the integrand is the vertical heat flux at  a given height y due t o  convection 
and conduction. The same finite differences were used to evaluate the integrand 
as were used to solve the energy equation (4). Since energy is conserved within 
the grid system and there is no heat flux through the vertical boundaries, the 
Nusselt numbers computed from (5) are invariant with y at steady state. This 
provided a convenient means of monitoring the approach to steady conditions. 
The steady values of Nu are listed in table 1. 

3. Numerical results 
3.1. Temperature-dependent viscosity 

We first consider the effect of a strongly temperature-dependent viscosity. We 
assume the exponential form 

n- = exp[C(&-T)]. ( 6 )  
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(a) C=O,+,,,= -11.2 

= 10 '+min= 

'- I 

- 24.5 

FIQURE 1. Streamlines and isotherms for the temperature dependent viscosity given by (6), 
Ra = 3600. Solid streamlines correspond to  = +, s, g ,  and g; dashed and dot- 
dashed streamlines correspond t o  0.01 and 0-001. Isotherms correspond to T = 0, 0.1, 
0.3, 0.5, 0-7, 0.9 and 1.0. 



118 K.  E. Torrance and D. L. Turcotte 

The viscosity is a maximum at the upper boundary and a minimum at the 
lower boundary. Numerical solutions were obtained for several values of C 
corresponding to different ratios of maximum to minimum viscosity and for a 
Rayleigh number of 3600. This value was chosen because it is large compared 
to the critical value for constant viscosity, 657.5, yet small enough to allow the 
use of a fairly coarse grid in the numerical calculations. 

The results of the numerical computations are shown in figure I .  The case 
C = 0 corresponds to a flow with constant viscosity and is included for com- 
parison purposes. For C = 3, 6 and 10 the viscosity varies by factoils of 20, 400 
and 22 000. In  the left column of graphs streamlines are shown and in the right 
column isotherms. A comparison of streamlines and isotherms for C = 0 and 
C = 3 shows small but significant changes. The circulation, decreases 
slightly as the fluid motion tends to concentrate in the region of lowest viscosity. 
This concentration is shown by the movement of the vortex centre, the dot, 
towards the lower left corner. Clearly the fluid temperature is highest near the 
lower boundary and in the rising thermal plume on the left, and this is the region 
of lowest viscosity, These trends continue for C = 6 and 10. However, the volume 
circulation is a minimum for C = 6 and increases considerably for C = 10. For 
C = 10 the fluid circulates rapidly in the lower left-hand corner of the cell where 
the effective Rayleigh number is large. Nearly parallel isotherms in the upper 
part of the cell indicate that heat transport is almost entirely by conduction. 
Note that Nu decreases as Cis increased (table 1) and appears to be approximately 
constant for C > 3. This result coincides with the development of a nearly 
stagnant region at  the top of the cell and this region acts as B thermal barrier to 
the transfer of heat between the horizontal boundaries. 

The results obtained here for C = 0, constant viscosity, can be compared with 
the analytical results of Veronis (1966). Our steady-state Nusselt number of 
3.428 is identical to the value 3-43 obtained by cross-plotting his results. In  
addition, the results for C = 0 generally agree with streamlines and isotherms 
given by Kuo (1961) and Fromm (1965). A detailed comparison is not possible 
inasmuch as different values of the parameters Ra and Pr were employed. 

3.2. Depth-dependent viscosity 

We next consider the effect of a strongly depth-dependent viscosity. Here we 
are motivated by the application to mantle convection. In  the mantle the pressure 
increases strongly with depth due to the hydrostatic head; it is expected that 
this increase in pressure will lead to an increase in viscosity. Since pressure 
variations due to the flow are negligible, i t  is thus appropriate to replace the 
pressure dependence of viscosity by a depth dependence. We again assume the 
exponential form 

7~ = exp [C(+-y)].  (7) 

This viscosity is a minimum at the upper boundary and a maximum at the 
lower boundary. The values of C chosen are the same as in the previous section 
and the overall variation of the viscosity is the same. All solutions were obtained 
for a Rayleigh number of 3500. 
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The steady-state streamlines and isotherms are given in figure 2 .  As C in- 
creases from the constant viscosity case C = 0 (shown in figure 1) the flow remains 
almost symmetric about the vertical centreline of the cell; however, the flow 
tends to concentrate in the region of low viscosity as shown by the movement of 

FIGURE 2 .  Streamlines and isotherms for the depth dependent viscosity given by (7),  
Ra = 3500. Streamlines correspond to  $I$,- or $./$ma, = +, +, Q and 5. Isotherms corre- 
spond to T = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 1.0. 

the vortex centre. The circulation decreases as C is increased. For C = 10 the 
flow splits into a pair of mirror symmetric cells. The tendency for a single con- 
vection cell to break up into multiple cells is consistent with the work of Foster 
(19690,). Foster determined the preferred horizontal wavelength for convection 
in a fluid with internal heating and adiabatic lower boundary. He used a viscosity 
expression similar to (7) and found that the preferred wavelength decreased with 
increasing C. The steady-state values of Nu (table I) decrease with increasing C 
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as the stagnant flow region near the lower boundary becomes a more effective 
thermal barrier. 

For C = 10 (run SA), the flow developed a periodic oscillation early in the 
iterative transient (starting from the steady-state solution for C = 6) which 
damped out with time. To investigate the double cells and the oscillations in the 
flow, a second C = 10 run (run 8B) was carried out using the constant viscosity, 
C = 0, solution as initial data. The resulting iterative transient developed a 
regular periodio behaviour of large amplitude which neither grew nor decayed 

(a) 1020 iteraticns 
. --6.2 inin - 

I 

(c) 1060 iteratioils 

Ymtn = - 1.8 
$max = + 1 .o 

(h) 1040 iterations 
gmin = -4.6 
@,,, = +0.14 

(d) I080 Iteratioc? 

Y,,, = + 4.3 

FIGURE 3. Streamlines for the period flow of run 8B. Solid streamlines correspond to 
+/$* = & and 3 ;  dashed streamlines correspond t o  $/$max = f and t. 

with time. After several cycles, an artificial damping was introduced by suddenly 
changing the F.O.J. factor to a large value. The oscillation was interrupted and 
eventually decayed to the two-cell solution shown in figure 2, Justification for 
interpreting the iterative transient as a time-like transient is provided by the 
work of Garabedian (1956) and others who noted a close similarity between the 
development of iterative solutions of steady equations and actual time-dependent 
solutions. The iterative transient behaves like a real fluid transient and the 
number of iterations is thus a distorted 'time scale '. 

The oscillation in the transient has a period between peaks of about 160 
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iterations. Streamlines for a half-period interval of 80 iterations are shown in 
figure 3; clockwise circulation is shown as solid lines, counterclockwise as dashed 
lines. Figure 3 clearly portrays a single cell motion in 3 (a) ,  the birth of a second 
cell in 3 (b ) ,  its growth in 3 (c ) ,  and its eventual displacement of the first cell 
in 3(d). Another 20 iterations and the second cell would look like the mirror 
image of 3 (a) and the process would start over again. 

Apparently there are two solutions to the problem for C = 10. One is a pair 
of steady, counter-rotating cells (figure 2 ) ;  in the other a pair of cells periodically 
replace each other. Which of the two flows will result appears to be a function of 
the initial conditions, the non-steady flow being unstable to a sizeable perturba- 
tion, in which case it decays into the steady mode. 

3.3. Temperature- and depth-dependent viscosity 

Finally we consider a temperature- and depth-dependent viscosity which may 
be applicable to the earth's mantle. At high temperatures and low strain rates 
the process of diffusion (Herring-Nabarro) creep is expected to dominate. Dif- 
fusion creep gives a linear relation between stress and rate of strain and therefore 
a Newtonianviscosity. This viscosity has been derived as a function of temperature 
and pressure by Herring (1950). Using appropriate crystalline parameters, 
Turcotte & Oxburgh (1 969) have expressed the diffusion creep viscosity for the 
mantle as 

5.222 x lo4+ 1-087 x lO-'p 
T' 

7 = 2-76 x 103T'exp 

with T' in OK, p in dyne/cm2, and 7 in poise. 
For the numerical calculations we consider a layer 700 km thick and replace 

the pressure p by the hydrostatic pressure. The pressures at the top and the 
bottom are taken to be zero and 2.30 x 10l1 dynes/cmz, respectively. The temper- 
atures at the top andbottom are takento be 1420and 2100 "K. Theseassumptions, 
although reasonable, neglect the presence of the cold crustal layer which has 
essentially infinite viscosity and a thickness of approximately 20 km. We also 
take the temperature in front of the exponential in (8) to be a constant equal to 
the mean of the boundary temperatures. This is a good approximation since 
the exponential temperature dependence dominates. With the above choice of 
temperatures on the horizontal boundaries the viscosity on the two boundaries 
and the reference viscosity are the same; from (8) this reference viscosity is 
ro = 4.55 x loz2 poise. Taking the values given above, the dimensionless viscosity 
ratio is given by - 

77.4 - 25.2y n- = lO-l6exp (9) 

From the temperature boundary conditions we have n- = 1 on the horizontal 
boundaries. If T is a linear function of y ,  i.e. pure conduction, then n- = 1 through- 
out the layer. 

Computations using this model have been performed over a range of Rayleigh 
numbers using a variety of uniform and non-uniform grids as indicated in table 1. 
Results are shown in figure 4 for Rayleigh numbers of 3500, lo4, lo5, lo6 and 10'. 



122 K.  E .  Torrance and D. L. Turcotte 

(a) R ~ = 3 5 0 0 , $ ~ i ~ =  -4.6 

(c) Ra=105,$min= -19.4 

(c) Ra= -69.8 

FIGURE 4. Streamlines, isotherms, and lines of' constant viscosity for the temperature- 
and depth-dependent viscosity model (9) a t  various Rayleigh numbers. Streamlines corre- 
spond t o  = A, 3, Q and 8;  isotherms correspond to T = 0, 0.1, 0.3, 0.5, 0.7, 0.9 and 
10. Numbers on the constant viscosity curves denote log,, T .  
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Certain reservations about the flow at R a  = lo7 exist, these will be elaborated 
later. In  addition to the streamlines and isotherms, the right-hand column in 
figure 4 gives the lines of constant viscosity in each flow. The grid used for each 
calculation is shown by ticks on the boundaries of the flow field. 

There is relatively little change of the streamlines as the Rayleigh number is 
increased. The change in the magnitude of the circulation is somewhat greater. 
The changes with Rayleigh number of the isotherms and lines of constant 
viscosity are more evident. For R a  between lo5 and lo7 the region of low viscosity 
is small and confined, whereas an extended region of cold fluid appears in the 
upper right-hand corner and a large region near the right side is nearly stagnant. 
The minimum viscosity is about two orders of magnitude smaller than the 
reference viscosity while the maximum viscosity in the stagnant region is nearly 
three to four orders of magnitude larger. 

The flow field for Ra = 3500 was obtained by sequentially refining the spatial 
grid (runs 9A, 10 and 11 in table 1).  For run 9A the flow broke up into as many 
as four cells during the transient. Eventually, only one cell persisted, giving 
essentially the flow shown in figure 4. This remarkable transient attests to the 
stability of the numerical method. The computation was repeated in run 9 B  
using a different initial field and required somewhat fewer iterations to achieve 
the same steady state. Obviously, the initial field of run 9 B  was a better guess. 
Once an approximate field was obtained, the grid was refined and the calculation 
continued. Fortunately, only a few hundred iterations were then required. If 
the refined grid of run 11 had been used to start from the initial data of run 9A 
or 9 B  the computer time involved would have been prohibitive. The sequence 
of calculations using successively refined grids appears to be an optimum. [The 
sequence ofruns 9A, 10 and 11 required about 20 min on an IBM 360/65 computer. 
The calculation of the flows in QQ3.1 and 3.2 required less than 4 min.] Note the 
small difference in the steady state Nu for the various grids used at R a  = 3500. 
This lends support to the validity of the results given previously using the coarse 
grid. 

For R a  = 108 the flow began to develop a periodic oscillation of the type dis- 
cussed in Q 3.2. Rather than a single large eddy being generated, small eddies 
were periodically generated near the lower right-hand corner of the cell. The 
grid was not adequate to resolve the flow and the computation was terminated. 
Further grid refinement in run 19 a t  R a  = lo7 revealed that the transient N u  
was starting to oscillate weakly. No secondary eddies formed during the com- 
putation, but the isotherms near the lower right corner of the cell were slowly 
oscillating up and down in response to the fluid’s efforts to develop an eddy in 
that region. It would appear that for R a  2 lo7 multiple cells will develop. 

4. Comparison with mantle convection 
The numerical results presented in $3.3 only approximate convection in the 

mantle. To obtain more realistic results would require relaxing some of the 
assumptions in the model. Nevertheless, it  is possible to compare some aspects 
of the variable viscosity flows with measurements on mantle convection. The 
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surface heat flux and movement on the upper boundary fall in this category. 
Figure 5 presents the maximum horizontal velocity and maximum heat flux 
[in terms of a local Nusselt number Nu, = hq,/k(TA - Th)] on the upper boundary 
as a function of Ra. The best fits through these points are of the form u - Ra0'63 
and Nu, N RuO'~~, respectively. 

104 105 

Ra 
1 O6 

FIGURE 6 .  Maximum calculatcd values of local Nusselt number, Nu,, and liorizontal velocity, 
u, along the uppor boundary of the cell versus Rayleigh number for the mantle viscosity 
model (9). Cross-hatched bands indicate the range of measurements of maximum heat 
flux to  the ocean floor and rangc of observed spreading velocities of the ocean floor away 
from ridges. 

Typical velocities of ocean floor movement away from ocean ridges are 1-4 cm/yr 
(Vine 1966) and maximum values of the surface heat flux (which occur at  the 
ridges) are 2-4pcal/cm2sec (Lee & Uyeda 1965, Von Herzen & Langseth 1965). 
Using h = 700km, K = 10-2cm2/sec, TA- Th = 6S0°K, and k = IO-zcal/ 
cmsec O K ,  the observed values are put in dimensionless form and are shown as 
cross-hatched bands in figure 5. Observed values of both quantities correspond 
to a range of Rayleigh numbers between lo5 and 1 06, thus lending some support 
to the validity of the numerical results. 
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